|| apoc.export.csv.data - APOC 核心文档 - Neo4j 文档

apoc.export.csv.data

此过程不被认为是多线程安全运行的。因此,并行运行时不支持此过程。欲了解更多信息,请参阅Cypher 手册 → 并行运行时

详情

语法

apoc.export.csv.data(nodes, rels, file, config) :: (file, source, format, nodes, relationships, properties, time, rows, batchSize, batches, done, data)

描述

将给定的 NODERELATIONSHIP 值导出到提供的 CSV 文件。

输入参数

名称

类型

描述

nodes

LIST<NODE>

要导出的节点列表。

rels

LIST<RELATIONSHIP>

要导出的关系列表。

file

STRING

数据将导出到的文件名。

config

MAP

{ stream = false :: BOOLEAN, batchSize = 20000 :: INTEGER, bulkImport = false :: BOOLEAN, timeoutSeconds = 100 :: INTEGER, compression = 'None' :: STRING, charset = 'UTF_8' :: STRING, quotes = 'always' :: ['always', 'none', 'ifNeeded'], differentiateNulls = false :: BOOLEAN, sampling = false :: BOOLEAN, samplingConfig :: MAP }

返回参数

名称

类型

描述

file

STRING

数据导出到的文件名。

source

STRING

导出数据的摘要。

format

STRING

文件导出的格式。

nodes

INTEGER

导出的节点数量。

relationships

INTEGER

导出的关系数量。

properties

INTEGER

导出的属性数量。

time

INTEGER

导出的持续时间。

rows

INTEGER

返回的行数。

batchSize

INTEGER

导出运行时批次的大小。

batches

INTEGER

导出运行时批次的数量。

done

BOOLEAN

导出是否成功运行。

data

ANY

导出返回的数据。

使用示例

本节中的示例基于以下示例图

CREATE (TheMatrix:Movie {title:'The Matrix', released:1999, tagline:'Welcome to the Real World'})
CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})
CREATE (Carrie:Person {name:'Carrie-Anne Moss', born:1967})
CREATE (Laurence:Person {name:'Laurence Fishburne', born:1961})
CREATE (Hugo:Person {name:'Hugo Weaving', born:1960})
CREATE (LillyW:Person {name:'Lilly Wachowski', born:1967})
CREATE (LanaW:Person {name:'Lana Wachowski', born:1965})
CREATE (JoelS:Person {name:'Joel Silver', born:1952})
CREATE
(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix),
(Carrie)-[:ACTED_IN {roles:['Trinity']}]->(TheMatrix),
(Laurence)-[:ACTED_IN {roles:['Morpheus']}]->(TheMatrix),
(Hugo)-[:ACTED_IN {roles:['Agent Smith']}]->(TheMatrix),
(LillyW)-[:DIRECTED]->(TheMatrix),
(LanaW)-[:DIRECTED]->(TheMatrix),
(JoelS)-[:PRODUCED]->(TheMatrix);

下面的 Neo4j Browser 可视化显示了导入的图

play movies

apoc.export.csv.data 过程将指定的节点和关系导出到 CSV 文件或作为流。

以下查询将所有带有 :Person 标签且 name 属性以 L 开头的节点导出到文件 movies-l.csv

MATCH (person:Person)
WHERE person.name STARTS WITH "L"
WITH collect(person) AS people
CALL apoc.export.csv.data(people, [], "movies-l.csv", {})
YIELD file, source, format, nodes, relationships, properties, time, rows, batchSize, batches, done, data
RETURN file, source, format, nodes, relationships, properties, time, rows, batchSize, batches, done, data
结果
file source format nodes relationships properties time rows batchSize batches done data

"movies-l.csv"

"data: nodes(3), rels(0)"

"csv"

3

0

6

2

3

20000

1

TRUE

NULL

movies-l.csv 的内容如下所示

"_id","_labels","born","name","_start","_end","_type"
"191",":Person","1961","Laurence Fishburne",,,
"193",":Person","1967","Lilly Wachowski",,,
"194",":Person","1965","Lana Wachowski",,,

以下查询将所有 ACTED_IN 关系以及该关系两侧带有 PersonMovie 标签的节点导出到文件 movies-actedIn.csv

MATCH (person:Person)-[actedIn:ACTED_IN]->(movie:Movie)
WITH collect(DISTINCT person) AS people, collect(DISTINCT movie) AS movies, collect(actedIn) AS actedInRels
CALL apoc.export.csv.data(people + movies, actedInRels, "movies-actedIn.csv", {})
YIELD file, source, format, nodes, relationships, properties, time, rows, batchSize, batches, done, data
RETURN file, source, format, nodes, relationships, properties, time, rows, batchSize, batches, done, data
结果
file source format nodes relationships properties time rows batchSize batches done data

"movies-actedIn.csv"

"data: nodes(5), rels(4)"

"csv"

5

4

15

2

9

20000

1

TRUE

NULL

movies-actedIn.csv 的内容如下所示

"_id","_labels","born","name","released","tagline","title","_start","_end","_type","roles"
"189",":Person","1964","Keanu Reeves","","","",,,,
"190",":Person","1967","Carrie-Anne Moss","","","",,,,
"191",":Person","1961","Laurence Fishburne","","","",,,,
"192",":Person","1960","Hugo Weaving","","","",,,,
"188",":Movie","","","1999","Welcome to the Real World","The Matrix",,,,
,,,,,,,"189","188","ACTED_IN","[""Neo""]"
,,,,,,,"190","188","ACTED_IN","[""Trinity""]"
,,,,,,,"191","188","ACTED_IN","[""Morpheus""]"
,,,,,,,"192","188","ACTED_IN","[""Agent Smith""]"

以下查询返回一个包含所有 ACTED_IN 关系以及该关系两侧带有 PersonMovie 标签的节点的流,这些数据位于 data 列中

MATCH (person:Person)-[actedIn:ACTED_IN]->(movie:Movie)
WITH collect(DISTINCT person) AS people, collect(DISTINCT movie) AS movies, collect(actedIn) AS actedInRels
CALL apoc.export.csv.data(people + movies, actedInRels, null, {stream: true})
YIELD file, nodes, relationships, properties, data
RETURN file, nodes, relationships, properties, data
结果
file nodes relationships properties data

NULL

5

4

15

"\"_id\",\"_labels\",\"born\",\"name\",\"released\",\"tagline\",\"title\",\"_start\",\"_end\",\"_type\",\"roles\" \"190\",\":Person\",\"1967\",\"Carrie-Anne Moss\",\"\",\"\",\"\",,,, \"189\",\":Person\",\"1964\",\"Keanu Reeves\",\"\",\"\",\"\",,,, \"191\",\":Person\",\"1961\",\"Laurence Fishburne\",\"\",\"\",\"\",,,, \"192\",\":Person\",\"1960\",\"Hugo Weaving\",\"\",\"\",\"\",,,, \"188\",\":Movie\",\"\",\"\",\"1999\",\"Welcome to the Real World\",\"The Matrix\",,,, ,,,,,,,\"189\",\"188\",\"ACTED_IN\",\"[\"\"Neo\"\"]\" ,,,,,,,\"190\",\"188\",\"ACTED_IN\",\"[\"\"Trinity\"\"]\" ,,,,,,,\"191\",\"188\",\"ACTED_IN\",\"[\"\"Morpheus\"\"]\" ,,,,,,,\"192\",\"188\",\"ACTED_IN\",\"[\"\"Agent Smith\"\"]\" "

© . This site is unofficial and not affiliated with Neo4j, Inc.