精华 图数据库-Neo4j介绍与Cypher入门
发布于 8 年前 作者 neocn 6301 次浏览 来自 分享
1、Neo4j简介

Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上形成图谱而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性,如:事务,索引等。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。

在一个图中包含两种基本的数据类型:Nodes(节点) 和 Relationships(关系)。Nodes 和 Relationships 包含key/value形式的属性。Nodes通过Relationships所定义的关系相连起来,形成关系型网络结构。

目前的客户端接口方式包括:neo4j-shell,REST API,Driver(Java\.NET\JS\Python\Ruby\PHP)等等。截止此时,最新版本为2.3.0社区版和企业版,其中企业版支持HA。Neo4j中的语言采用Cypher,一种类似于SQL的语法格式。Neo4j中的数据处理分析可采用Spark的Gragh图计算处理。

Neo4j因其嵌入式、高性能、轻量级等优势,越来越受到关注。

 

2、单机安装和简单使用(社区版)

 

下载地址:http://neo4j.com/download/

直接解压启动:tar -zxcf  neo4j-community-2.3.0-M02-unix.tar.gz

 

配置外网访问IP地址:conf/neo4f-server.properties
org.neo4j.server.webserver.address=0.0.0.0
执行命令启动数据库服务:neo4j/bin/neo4j start

 

浏览器http://localhost:7474/browser/启动,进行Gragh操作。默认的账号和密码为neo4j/neo4j。进入后需要修改密码。以下是创建图语句和结果视图:

 

 

3、Cypher 查询语言简单使用
3.1.基本语法
Node语法:
Cypher使用一对圆括号来表示一个节点:提供了多种格式如下:
() 匿名节点
(matrix)  为节点添加一个ID
(:Movie) Movie label标签,声明的是节点类型。noe4j的索引使用label,每个索引由标签和属性组成
(matrix:Movie)
(matrix:Movie {title: "The Matrix"}) 节点属性(如:title)代表一个key\value 的List
(matrix:Movie {title: "The Matrix", released: 1997})
 
RelationShip语法:
--  表示一个无指向的关系
--> 表示一个有指向的关系
[] 能够添加ID,属性,类型等信息
-[role]->
-[:ACTED_IN]->
-[role:ACTED_IN]->
-[role:ACTED_IN {roles: ["Neo"]}]->
 
Pattern 语法:
节点和关系语法的合并就表示模式。
(keanu:Person:Actor   {name: "Keanu Reeves"} )
-[role:ACTED_IN   {roles: ["Neo"] } ]->
(matrix:Movie    {title: "The Matrix"} )
Pattern Identifiers :
为模式分配ID,为例增加模块化和重复使用
acted_in = (:Person)-[:ACTED_IN]->(:Movie)
 
3.2.模式实践
bin/neo4j-shell
创建一个节点数据:
CREATE (:Movie { title:"The Matrix",released:1997 }) ;
 
如果想返回创建的数据,需要指定ID:
create (p:Person {name:"weiw",born:2000}) return p;
 
创建多个节点数据,多个元素间用逗号或者用create分开:
create (a:Person {name:"jiaj",born:2003})-[r:ACTED_IN {roles:["student"]}]->(m:School {name:"CDLG",address:"chengdu"})
create (d:Person {name:"weiw",born:2001})-[:DIRECTED]->(m)
return a,d,r,m;
 
Matching Patterns :模式匹配
我们想连接新的数据到已经存在的结构,这个需求需要我们知道怎样找到在图中已经存在的模式。
match (m:School) return m;
 
match (p:Person {name:"weiw"}) return p;
 
match (p:Person {name:"jiaj"})-[r:ACTED_IN]->(m:School) return m.name,r.roles;
 
Attaching Structures:
将match和create进行合并使用。将匹配到的节点连接到一个新的节点上。
match (p:Person {name:"jiaj"})
create (m:School {name:"DEJY",address:"deyang"})
create (p)-[r:ACTED_IN {roles:["studeng"]}]->(m)
return p,r,m;
 
Completing Patterns :
merge在查找时,如果找到则返回,如果没找到则创建。可以避免创建重复的节点
merge (m:School {name:"SCDX"})
on create set m.address="chegndu"
return m;
 
MATCH (m:School { name:"CDLG" })
MATCH (p:Person { name:"jiaj" })
MERGE (p)-[r:ACTED_IN]->(m)
ON CREATE SET r.roles =['teacher']
RETURN p,r,m ;
 
 
之前的案列中,关联的方向是随意的,你可以改变箭头的指向。MERGE 会检查关联两边的方向,如果没有匹配到关系,则创建一个新的方向的关系。
CREATE (y:Year { year:2014 })
MERGE (y)<-[:IN_YEAR]-(m10:Month { month:10 })
MERGE (y)<-[:IN_YEAR]-(m11:Month { month:11 })
RETURN y,m10,m11 ;
 
3.3.Getting the Results You Want
数据准备:以人在电影中扮演的角色为例
CREATE (matrix:Movie { title:"The Matrix",released:1997 })
CREATE (cloudAtlas:Movie { title:"Cloud Atlas",released:2012 })
CREATE (forrestGump:Movie { title:"Forrest Gump",released:1994 })
CREATE (keanu:Person { name:"Keanu Reeves", born:1964 })
CREATE (robert:Person { name:"Robert Zemeckis", born:1951 })
CREATE (tom:Person { name:"Tom Hanks", born:1956 })
CREATE (tom)-[:ACTED_IN { roles: ["Forrest"]}]->(forrestGump)
CREATE (tom)-[:ACTED_IN { roles: ['Zachry']}]->(cloudAtlas)
CREATE (robert)-[:DIRECTED]->(forrestGump)
 
Filtering Results :数据过滤
常用谓词:AND, OR, XOR and NOT
match (m:Movie) where m.title="The Matrix" return m;
 
MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
WHERE p.name =~ "K.+" OR m.released > 2000 OR "Neo" IN r.roles 
RETURN p,r,m ;
最后一个角色条件没有完全匹配上:
 
MATCH (p:Person)-[:ACTED_IN]->(m)
WHERE NOT (p)-[:DIRECTED]->()
RETURN p,m ;
 
Returning Results :结果返回
返回 numbers, strings and arrays as [1,2,3], and maps like {name:"Tom Hanks", born:1964, movies:["Forrest Gump", ...], count:13}.
常用表达式:
 names[0] ,movies[1..-1].  length(array), toInt("12"), substring("2014-07-01",0,4), or coalesce(p.nickname,"n/a") ,DISTINCT
 
MATCH (p:Person) 
RETURN p, p.name AS name, upper(p.name), coalesce(p.nickname,"n/a") AS nickname, { name: p.name, label:head(labels(p))} AS person;
 
Aggregating Information:聚合操作
常用聚合: count, sum, avg, min, max,count(DISTINCT role),NULL值自动跳过
MATCH (:Person)
RETURN count(*) AS people
 
 
To find out how often an actor and director worked together, you’d run this statement:
MATCH (actor:Person)-[:ACTED_IN]->(movie:Movie)<-[:DIRECTED]-(director:Person)
RETURN actor,director,count(*) AS collaborations
 
Ordering and Pagination :排序和分页
排序用法:ORDER BY person.age
分页用法:SKIP {offset} LIMIT {count}
MATCH (a:Person)-[:ACTED_IN]->(m:Movie)
RETURN a,count(*) AS appearances
ORDER BY appearances DESC LIMIT 10;
 
Collecting Aggregation:聚集聚合
collects all aggregated  values into a real array or list。
MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)
RETURN m.title AS movie, collect(a.name) AS cast, count(*) AS actors

 

 

 

3.4.Compose Large Statements:编写大型语句
UNION:
MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
RETURN p,type(r) AS rel,m
UNION
MATCH (p:Person)-[r:DIRECTED]->(m:Movie)
RETURN p,type(r) AS rel,m
WITH:
 
3.5.Utilizing Data Structures
MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)
RETURN m.title AS movie, collect(a.name)[0..5] AS five_of_cast
 
List谓词:
When using lists and arrays in comparisons you can use predicates like value IN list or any(x IN list
WHERE x = value). There are list predicates to satisfy conditions for all, any, none and single elements.
MATCH path =(:Person)-->(:Movie)<--(:Person)
WHERE ALL (r IN rels(path) WHERE type(r)= 'ACTED_IN') AND ANY (n IN nodes(path) WHERE n.name = 'Clint  Eastwood') 
RETURN path
 
List处理:
 you want to process lists to filter, aggregate (reduce) or transform (extract) their values.
WITH range(1,10) AS numbers
WITH extract(n IN numbers | n*n) AS squares
WITH filter(n IN squares WHERE n > 25) AS large_squares
RETURN reduce(a = 0, n IN large_squares | a + n) AS sum_large_squares;
 
MATCH (m:Movie)<-[r:ACTED_IN]-(a:Person)
WITH m.title AS movie, collect({ name: a.name, roles: r.roles }) AS cast
RETURN movie, extract(c2 IN filter(c1 IN cast WHERE c1.name =~ "T.*")| c2.roles)
 
Unwind Lists:列表展开
you have collected information into a list, but want to use each element individually as a row。For instance, you might want to further match patterns in the graph.
MATCH (a:Person)-[:ACTED_IN]->(m:Movie)<-[:ACTED_IN]-(colleague:Person)
WITH colleague, count(*) AS frequency, collect(DISTINCT m) AS movies
ORDER BY frequency DESC LIMIT 5 UNWIND movies AS m
MATCH (m)<-[:ACTED_IN]-(a)
RETURN m.title AS movie, collect(a.name) AS cast
 
3.6.Labels, Constraints and Indexes
使用约束: title被唯一化约束
adding the unique constraint will add an index on that property。
CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.title IS UNIQUE
 
查看索引:
CREATE INDEX ON :Actor(name)
CREATE (actor:Actor { name:"Tom Hanks" }),(movie:Movie { title:'Sleepless IN Seattle' }), (actor)-[:ACTED_IN]->(movie); 
 
标签:
MATCH (actor:Actor { name: "Tom Hanks" })  SET actor :American return actor; 
删除标签:
MATCH (actor:Actor { name: "Tom Hanks" })  REMOVE actor:American;

 

 

本期关于neo4j的介绍只是做了入门级别的使用,后续会更加详细的介绍Cypher的所有语法、Neo4j-JDBC的使用以及HA的安装过程。

官方文档手册下载地址:http://download.csdn.net/detail/wangweislk/8983743

回到顶部