精华 neo4j实现PageRank算法
发布于 4 年前 作者 pangguoming 2611 次浏览 来自 分享

neo4j实现PageRank算法 该内容源于neo4j算法数据库GDS操作手册1.4版,只是记录下来方便自己理解,反思回顾。

例子:创建一个属性图

CREATE
  (home:Page {name:'Home'}),
  (about:Page {name:'About'}),
  (product:Page {name:'Product'}),
  (links:Page {name:'Links'}),
  (a:Page {name:'Site A'}),
  (b:Page {name:'Site B'}),
  (c:Page {name:'Site C'}),
  (d:Page {name:'Site D'}),

  (home)-[:LINKS {weight: 0.2}]->(about),
  (home)-[:LINKS {weight: 0.2}]->(links),
  (home)-[:LINKS {weight: 0.6}]->(product),
  (about)-[:LINKS {weight: 1.0}]->(home),
  (product)-[:LINKS {weight: 1.0}]->(home),
  (a)-[:LINKS {weight: 1.0}]->(home),
  (b)-[:LINKS {weight: 1.0}]->(home),
  (c)-[:LINKS {weight: 1.0}]->(home),
  (d)-[:LINKS {weight: 1.0}]->(home),
  (links)-[:LINKS {weight: 0.8}]->(home),
  (links)-[:LINKS {weight: 0.05}]->(a),
  (links)-[:LINKS {weight: 0.05}]->(b),
  (links)-[:LINKS {weight: 0.05}]->(c),
  (links)-[:LINKS {weight: 0.05}]->(d);

1:属性图如下 在这里插入图片描述 image.png 2:给这个属性图起一个名字

CALL gds.graph.create(
  'myGraph',
  'Page',
  'LINKS',
  {
    relationshipProperties: 'weight'
  }
)

3:可以评估一下这个属性图所占内存

CALL gds.pageRank.write.estimate('myGraph', {
  writeProperty: 'pageRank',
  maxIterations: 20,
  dampingFactor: 0.85
})
YIELD nodeCount, relationshipCount, bytesMin, bytesMax, requiredMemory

4:现在可以调用GDS中的PageRank算法

CALL gds.pageRank.stream('myGraph')
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

5:还有stats、mutate和write执行模式,此处不在赘述 6:下面执行带权重的算法计算

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  relationshipWeightProperty: 'weight'
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

7:这里约束条件tolerance设为0.1,低于此值,算法结束,结果返回

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  tolerance: 0.1
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

8:阻尼系数dampingFactor:也就是概率值改变会引起中心度值不同,这里变为0.05,看起来和默认的0.85差不多,源于图节点比较少,还不足以引起质变

CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.05
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

9:个性化PageRank算法,其实就是制定一个特定的起点,重点关注这个指定点的中心度

MATCH (siteA:Page {name: 'Site A'})
CALL gds.pageRank.stream('myGraph', {
  maxIterations: 20,
  dampingFactor: 0.85,
  sourceNodes: [siteA]
})
YIELD nodeId, score
RETURN gds.util.asNode(nodeId).name AS name, score
ORDER BY score DESC, name ASC

相关链接 这篇文章关于PageRank算法的通俗理解 (https://segmentfault.com/a/1190000015409175)

2 回复

你好,请问我在第二步给属性图起名出错: 是因为我没安装这个插件吗?是要去哪安装呢1.png

@ttyu2333 下载这个存储过程的jar包,你搜下

回到顶部